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Generating a high-quality genome sequence is a critical 
foundation for the analysis of any organism. Yet it remains a 
challenge, especially for genomes containing substantial 
repetitive sequence, such as Aedes aegypti, the principal 
vector of the Zika virus. Recently, an international consorti-
um was organized to better understand Zika’s principal vec-
tor by improving the quality of the Ae. aegypti genome (1). 

Currently, most genomes are assembled from a deep col-
lection of short DNA sequence reads. This data is combined 
with linking information, which makes it possible to esti-
mate the distance between individual sequences; such link-
ing information is typically obtained by sequencing paired 
ends from a DNA clone library with a characteristic insert 
size. On the basis of sequence overlap, the reads are assem-
bled into contiguous sequences (contigs); by means of the 
linking information, the contigs are ordered and oriented 
with respect to one another into larger scaffolds (2). Within 
scaffolds, adjacent contigs are often separated by a gap, 
which corresponds to a region that is hard to assemble from 
the available sequence reads (for example, due to repetitive 
sequence or low coverage), but that can nevertheless be 
spanned by using the linking information to determine the 
contigs at either end of the gap. Long links, from large-
insert clones such as Fosmids, have been especially valuable 
(3). Such clone libraries provide physical coverage (defined 
as the average number of clones spanning a point in the 

genome), often in the range of 1000-fold. With this strategy, 
it has been possible to produce mammalian genome assem-
blies with scaffolds ranging from 1-15 megabases (2, 3). 
However, it has generally not been feasible to achieve scaf-
folds that span entire chromosomes, because some repeti-
tive regions are too large and difficult to be spanned by the 
available clone libraries. 

Hi-C is a sequencing-based approach for determining 
how a genome is folded by measuring the frequency of con-
tact between pairs of loci (4, 5). Contact frequency depends 
strongly on the one-dimensional distance, in base pairs, be-
tween a pair of loci. For instance, loci separated by 10kb in 
the human genome form contacts 8 times more often than 
those at a distance of 100kb. In absolute terms, a typical 
distribution of Hi-C contacts from a given locus is 15% to 
loci within 10kb; 15% to loci 10kb – 100kb away; 18% to loci 
100kb – 1Mb away; 13% to loci 1Mb – 10Mb away; 16% to 
loci 10Mb – 100Mb away; 2% to loci on the same chromo-
some, but more than 100Mb away; and 21% to loci on a dif-
ferent chromosome. 

Hi-C data can provide links across a variety of length 
scales, spanning even whole chromosomes. However, unlike 
paired-end reads from clone libraries, any given Hi-C con-
tact spans an unknown length and may connect loci on dif-
ferent chromosomes. This challenge may be mitigated, in 
part, by the physical coverage achieved by Hi-C datasets. For 
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and Culex quinquefasciatus, each consisting of three scaffolds corresponding to the three chromosomes 
in each species. These assemblies indicate that virtually all genomic rearrangements among these species 
occur within, rather than between, chromosome arms. The genome assembly procedure we describe is 
fast, inexpensive, accurate, and can be applied to many species. 
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the maps reported in (4, 5), summing the span of each indi-
vidual contact reveals that 1X of sequence coverage of the 
target genome translates, on average, into 23,000X of physi-
cal coverage. This suggests that a statistical approach ana-
lyzing the pattern of Hi-C contacts as a whole could 
generate extremely long scaffolds. 

Computational experiments with simulated input data 
have suggested that Hi-C should be able to produce chromo-
some-length scaffolds (6–8). Indeed, Hi-C has been used to 
improve draft genome assemblies (7, 9) and to create chro-
mosome-length scaffolds for large genomes (10). In this pro-
cess, Hi-C data are used to assign draft scaffolds to 
chromosomes, and then to order and orient the draft scaf-
folds within each chromosome. Unfortunately, the resulting 
predictions contain large errors, including chromosome-
scale inversions and misjoins that fuse chromosomes (10). 
Such misassemblies may be caused by errors in the original 
draft assembly (10). One approach to avoiding such errors 
might be additional types of information, such as longer 
reads or optical mapping data (see e.g., (11, 12)). 

We therefore sought to develop a robust procedure for 
using Hi-C linking information to generate accurate genome 
assemblies with chromosome-length scaffolds. A key aspect 
of the approach is to first use Hi-C data to identify and cor-
rect errors in the scaffolds of the initial assembly. Briefly, we 
correct misjoins by identifying positions where a scaffold’s 
long-range contact pattern changes abruptly, which is un-
likely for a correctly assembled scaffold. Next, we use a nov-
el algorithm to anchor, order, and orient the resulting 
sequences, employing the contact frequency between a pair 
of sequences as an indicator of their proximity in the one-
dimensional genome. Finally, we merge contigs and scaf-
folds that correspond to overlapping regions of the genome 
by identifying pairs of scaffolds exhibiting both strong se-
quence homology as well as strong similarity in long-range 
contact pattern (Fig. 1 and fig. S1). 

We validated our approach by creating a de novo assem-
bly of a human genome (the GM12878 cell line), comprising 
23 chromosome-length scaffolds, using only short Illumina 
reads (67X coverage). We created a draft assembly from 
250bp paired-end reads (60X coverage, generated by Illumi-
na sequencing with a PCR-free protocol, downloaded from 
Sequence Read Archive (SRX297987); assembled with 
DISCOVAR de novo (13)). This assembly, dubbed Hs1, com-
prises 2.82 Gb of sequence (contig N50 length: 103kb) parti-
tioned among 73,770 scaffolds (scaffold N50: 126kb; Table 1). 

We then used in situ Hi-C data (6.7X sequence coverage) 
to improve Hs1. We set aside the tiny scaffolds (43,231 scaf-
folds shorter than 15kb, whose N50 length is 6.1kb). Togeth-
er, these contain 5.4% of sequenced bases in Hs1. Due to 
their small size, they have relatively few Hi-C contacts, and 
are more difficult to analyze. We then used Hi-C data to 

split, anchor, order, and orient the remaining 30,539 scaf-
folds. 

The resulting assembly (Hs2-HiC) consisted of 23 huge 
scaffolds (lengths from 28.8Mb to 225.2Mb) containing 
99.5% of the total sequence, together with an additional 811 
small scaffolds (N50 length of 30kb; maximum length of 
231kb) making up the remaining 0.5% of the genome (Table 
1 and tables S1 to S6). Crucially, the assembly was generated 
entirely de novo. 

We assessed the quality of Hs2-HiC by comparing it to 
the human genome reference, hg38 (fig. S9). The 23 scaf-
folds correspond to the 23 human chromosomes, spanning 
99% of the length and containing 91% of the sequence in the 
chromosome-length scaffolds (table S1). These scaffolds are 
comparable in length to those reported by the International 
Human Genome Sequencing Consortium (14), and longer 
than those reported by (15). 

Of the 29,344 scaffolds that were incorporated into 
chromosome-length scaffolds in Hs2-HiC and that could be 
uniquely placed in hg38, 99.70% (comprising 99.88% of the 
sequenced bases) were assigned to the correct chromosome. 
For randomly selected pairs of scaffolds assigned to the 
same chromosome-length scaffold in Hs2-HiC, the order in 
Hs2-HiC agreed with the order in hg38 in 99% of cases. The 
agreement was 96% for pairs of scaffolds that were adjacent 
in Hs2-HiC, reflecting the fact that the Hi-C data provides 
less information to resolve the fine-structure order of short 
scaffolds. However, the agreement was 99% for scaffolds of 
length at least 120kb. Similarly, the orientation was correct 
for 93% of scaffolds, with errors mostly due to short scaf-
folds. 

Taken together, the chromosome-length, small, and tiny 
scaffolds accounted for 97.3% of the chromosome-length 
scaffolds of hg38; the remainder was mostly due to repeti-
tive sequences that could not be adequately assembled from 
short reads. Our method was further validated by obtaining 
similar results using a draft assembly generated with Pacific 
Biosciences long reads, which contained longer contigs (16). 

Next, we applied our approach to Ae. aegypti, which was 
previously assembled from Sanger reads (8X coverage) (17). 
This assembly, ‘AaegL2’, contains 1.3Gb of sequence (contig 
N50: 83kb) partitioned among 4756 scaffolds (scaffold N50: 
1.5Mb). 

To improve AaegL2, we generated in situ Hi-C data (40X 
sequence coverage). After setting aside 2222 scaffolds short-
er than 10kb (spanning 1% of the bases in the initial assem-
bly), we used Hi-C data to split, anchor, order, orient, and 
merge the remaining 2534 scaffolds. Notably, our pipeline 
identified apparent misjoins in 1422 of these input scaffolds 
(56%). 

The resulting assembly, AaegL4, contained three huge 
scaffolds (307Mb, 472Mb, and 404Mb in length) comprising 
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93.6% of the input sequence, together with an additional 
3981 small scaffolds (N50 of 65kb, maximum of 474kb) 
comprising the remainder. The three huge scaffolds corre-
spond to chromosomes 1, 2, and 3 of the Ae. aegypti genome 
(18) (Table 1 and tables S1 to S7). 

We compared our assembly to a genetic map of Ae. ae-
gypti (19). Of the 2006 markers in the genetic map, 1826 
markers could be unambiguously mapped in AaegL4. Strik-
ingly, our assembly agreed with the genetic map for 1822 of 
these 1826 markers (Fig. 2). All exceptions were due to mis-
joins in AaegL2 that had not been detected in AaegL4. We 
also observed close correspondence with a physical map of 
the Ae. aegypti genome (fig. S12). 

Next, we used our approach to create a genome assembly 
of the mosquito Culex quinquefasciatus, which, like Ae. ae-
gypti, is a disease vector – in this case for West Nile virus, 
St. Louis encephalitis, and lymphatic filariasis. We generat-
ed in situ Hi-C data (100X sequence coverage) and used it to 
improve the previous assembly, CpipJ2 (20), obtaining a 
new assembly, CpipJ3, with three chromosome-length scaf-
folds that together contain 94% of the sequence in the ini-
tial assembly (Table 1 and tables S2 to S7). We validated 
CpipJ3 by comparing it to existing genetic and physical 
maps of the Cx. quinquefasciatus genome (20, 21) (Fig. 2 
and figs. S13 and S14). 

We note that the mosquito Hi-C data and the draft as-
semblies were generated from different strains, although 
ideally the same strain would be used in both cases.The cre-
ation of chromosome-length scaffolds for Ae. aegypti and 
Cx. quinquefasciatus allowed us to use our Hi-C data to cre-
ate a Hi-C heatmap showing proximity relationships be-
tween chromosomal loci throughout both genomes (22, 23) 
(Fig. 1 and fig. S15). Strikingly, the distal ends of the three 
chromosomes show spatial clustering in both species. Both 
species also exhibited a second spatial cluster, comprising 
three loci: one locus from each chromosome, positioned 
roughly in the middle. This clustering is consistent with the 
spatial clustering of centromeres, which is known to be pre-
sent in many organisms. Taken together, the 3D maps are 
consistent with a spatial arrangement known as the Rabl 
configuration (24). Our findings also suggest the position of 
each chromosome’s centromere, and thereby partition each 
mosquito chromosome into two arms. 

The assemblies of the Ae. aegypti and Cx. quinquefascia-
tus genomes allowed us to study genome evolution.We be-
gan by examining a whole-genome alignment between the 
published Anopheles gambiae genome, which is 278Mb long, 
and Ae. Aegypti, which is ~1.3Gb long. This analysis identi-
fied 1389 large blocks of conserved synteny (fig. S16). Simi-
lar results were observed for Cx. quinquefasciatus. Despite 
extensive rearrangements, we observed correspondence of 
sequence content among chromosome arms in An. gambiae, 

Cx. quinquefasciatus and Ae. aegypti. Specifically, for the 
vast majority of DNA sequences on a particular chromo-
some arm in one of the three species, the homologous se-
quences were all found on a single chromosome arm in the 
other two species. The only exception is the observation that 
a single arm in An. gambiae (2R) corresponds to two arms 
in both Ae. aegypti (1q and 3p) and Cx. quinquefasciatus (1q 
and 3q). This is consistent with the breakage of this arm in 
the lineage leading to the shared ancestor of Ae. aegypti and 
Cx. quinquefasciatus (Fig. 3 and tables S8 to S11). These ob-
servations are consistent with cytogenetic analyses (18–20) 
(figs. S17 and S18). 

Taken together, these results suggest that – with the ex-
ception of the breakage event noted above – each chromo-
some arm in the Aedes, Culex, and Anopheles species 
descends from a single arm present in their common ances-
tor approximately 150-200 million years ago. The preference 
for within-arm rearrangement in mosquitos is stronger than 
has been observed in mammals (25). 

Interestingly, the left arm of chromosome 2 in Drosophi-
la melanogaster has a clear counterpart in all three mosqui-
to species. Thus, all four arms derive from a single 
chromosome arm present in their dipteran ancestor a quar-
ter of a billion years ago (Fig. 3 and fig. S19). 

Overall, our results show that incorporating Hi-C data 
into genome assembly provides a rapid, inexpensive meth-
odology for generating highly accurate de novo assemblies 
with chromosome-length scaffolds. At present, the sequenc-
ing costs are below $10,000 for mammalian genomes and 
less for smaller genomes (table S12). 

It is important to bear in mind that these assemblies still 
contain errors. For example, while the Hi-C data provides 
extensive links covering large distances, the current ap-
proach is not perfect for local ordering of small adjacent 
contigs. This might be circumvented by more sophisticated 
analysis of Hi-C data. Additional data (such as long or 
paired-end reads) could also improve the results. 

The ability to rapidly and reliably generate genome as-
semblies with chromosome-length scaffolds should acceler-
ate genomic analysis of many organisms. 
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Fig. 1. Starting with a draft assembly, we use Hi-C data to correct misjoins, scaffold, and merge overlaps, 
thereby generating an assembly of the Aedes aegypti mosquito genome with chromosome-length 
scaffolds. Here, we show contact matrices generated by aligning a Hi-C dataset to both the AaegL2 assembly 
(17) that we used as input (left) and the final AaegL4 assembly generated by our algorithm (right). Pixel 
intensity in the contact matrix indicates how often a pair of loci co-locate in the nucleus. The loci 
corresponding to each row and column are illustrated using chromograms. On the left, the chromogram 
depicts the 3 linkage groups (Lnk1, Lnk2, Lnk3, or Unassigned) reported in AaegL2; on the right, it depicts the 
3 chromosome-length scaffolds in AaegL4 (chr1, chr2, chr3). To create the chromogram, each AaegL4 arm is 
assigned a linear color gradient, thereby specifying a color for each AaegL4 locus. The same colors are then 
used for the corresponding loci in AaegL2 (left) and in the illustration of our procedure (center, though with 
increased contrast). Chromogram discontinuities indicate differences with AaegL4. In the center, we illustrate 
our assembly algorithm using an input scaffold from Lnk1 of AaegL2 (‘supercontig 1.12’, see bracket). First, the 
scaffold is examined for misjoins and split such that the resulting segments each exhibit a continuous Hi-C 
signal (top row). Next, the segments are used as input for iterative scaffolding. Ultimately, only one of the 
segments is assigned to chromosome 1 of AaegL4. The rest of supercontig 1.12 is assigned to 2q, in the vicinity 
of several scaffolds that were not anchored in AaegL2 (middle row). Finally, segments exhibiting a similar 3D 
signal are examined for evidence of overlapping sequence (green rectangle) and merged (bottom row). The 
final contact map is consistent with the Rabl configuration, i.e., the spatial clustering of centromeres and 
telomeres. 
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Fig. 2. Comparison of AaegL4 and CpipJ3 with genetic maps. (A) We compared AaegL4 with a genetic map 
of Ae. aegypti (19). Our assembly agreed with the genetic map on 1822 out of 1826 markers. The exceptions 
are due to misjoins in AaegL2 that were not corrected in AaegL4. (B) Similarly, CpipJ3 is in agreement with a 
genetic map of Cx. quinquefasciatus (21). 
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Fig. 3. The content of chromosome arms is strongly conserved across 
mosquitos. Here, each 100kb locus in Ae. aegypti is assigned a color. For 
the other species, each 100kb locus is assigned a combination of the colors 
of the corresponding DNA sequences in Ae. aegypti, weighted by length. 
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Table 1. Assembly statistics for the Hs2-HiC, AaegL2, and CpipJ3 assemblies. We did not attempt to further as-
semble tiny scaffolds contained in each draft assembly. The other scaffolds in each draft were assembled using Hi-C 
to create huge, chromosome-length scaffolds, and additional small scaffolds. 
 
 Hs2-HiC AaegL4 CpipJ3 

Draft scaffolds 
Base pairs 2,819,306,710 1,310,076,332 539,974,961 
Number of contigs 80,223 36,204 48,672 
Contig N50 102,922 82,618 28,546 
Number of scaffolds 73,770 4,756 3,172 
Scaffold N50 125,775 1,547,048 486,756 

Chromosome-length scaffolds 
Base pairs 2,654,127,695 1,157,961,392 492,400,177 
Number of contigs 36,616 25,585 41,051 
Contig N50 108,937 93,132 30,599 
Number of scaffolds 23 3 3 
Scaffold N50* 141,244,516 404,248,146 190,989,159 

Small scaffolds 
Base pairs 13,416,754 82,464,476 31,168,201 
Number of contigs 850 9,416 5,609 
Contig N50 27,968 14,202 10,570 
Number of scaffolds 811 3,981 1,224 
Scaffold N50 30,467 65,348 45,079 

Tiny scaffolds 
Base pairs 151,762,261 14,122,292 112,343 
Number of contigs 43,259 2,223 61 
Contig N50 6,129 6,574 2,110 
Number of scaffolds 43,231 2,222 25 
Scaffold N50 6,144 6,577 9,403 
*The scaffold N50 for the output assemblies is not a particularly meaningful assembly statistic: It is determined al-
most entirely by the chromosome-length scaffolds, which reflect the length distribution of the chromosomes rather 
than the quality of the genome assembly. The particular value shown is the length of chromosome X (Hs2-HiC) and 
chromosome 3 (for AaegL4 and CpipJ3). 
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